Third Generation Flavored Dark Matter

Tongyan Lin University of Chicago

July 3, 2014 Santa Fe Workshop

where is the dark matter?

why isn't it lighting up direct detection experiments?

turning to the third generation:

- coupling DM to the third generation suppresses proton elastic scattering
- tagging at colliders
- indirect signals remain
- flavored DM: large
 yukawas can lead to
 large mass splittings and
 hierarchy in couplings

based on: Batell, Lin and Wang; Agrawal, Batell, Hooper, Lin

for third-gen lepton, see Agrawal, Chacko, et al.

outline

- MFV dark matter and RPV SUSY
- top-flavored dark matter
- bottom-flavored dark matter
 - as a model for the Galactic Center excess

flavored dark matter

Flavor symmetry of the SM:

$$SU(3)_Q \times SU(3)_u \times SU(3)_d$$

Broken by Yukawas $Y_u \bar{Q} H^\dagger u_R + Y_d \bar{Q} H d_R$

Additional sources of flavor/CP violation are highly constrained. Problem for models of BSM physics!

Minimal Flavor Violation: to get around constraints, assume no <u>new</u> sources of flavor violation - only Yukawas

$$Q \sim (3, 1, 1)$$
 $\bar{u} \sim (1, \bar{3}, 1)$
 $\bar{d} \sim (1, 1, \bar{3})$

Introduce a dark matter multiplet (gauge singlet) transforming under SM flavor symmetry

$$Y_u \sim (3, 3, 1)$$
 $X_d \sim (\bar{3}, 1, 3)$

$$\chi \sim (n_Q, m_Q)_Q \times (n_u, m_u)_{u_R} \times (n_d, m_d)_{d_R}$$

MFV DM: dark matter multiplet couples to SM quarks, respecting flavor symmetry. (Alternatively, the DM x SM flavor symmetry is broken in a way very close to MFV limit.)

Use assumption of MFV to stabilize the dark matter

Batell, Pradler, and Spannowsky

Consider a higher-dimension operator that could lead to DM decay:

$$\mathcal{O}_{\text{decay}} = \chi \underbrace{Q \dots \overline{Q} \dots u_R \dots \overline{u}_R \dots d_R \dots \overline{d}_R \dots}_{A \quad B \quad C} \underbrace{D \quad E \quad F}_{F}$$

$$\times \underbrace{Y_u \dots Y_u^{\dagger} \dots Y_d \dots Y_d^{\dagger} \dots}_{H \quad I \quad J} \mathcal{O}_{\text{weak}},$$

requiring gauge-invariance and assuming MFV leads to the conditions on the DM multiplet.

$$(n-m) \mod 3 \neq 0$$

$$n \equiv n_Q - n_u - n_d, \quad m \equiv m_Q - m_u - m_d$$

$$\chi \sim (n_Q, m_Q)_Q \times (n_u, m_u)_{u_R} \times (n_d, m_d)_{d_R}$$

dark matter stability

flavor triality

$$U \equiv \left(e^{4\pi i/3}\right)_{\text{color}} \times \left(e^{2\pi i/3}\right)_{Q} \times \left(e^{2\pi i/3}\right)_{u} \times \left(e^{2\pi i/3}\right)_{d}$$

SM quarks, Yukawas neutral under flavor triality

If DM charged, lightest flavor is stable

(n,m)	$SU(3)_Q \times SU(3)_{u_R} \times SU(3)_{d_R}$	Stable?
$\boxed{(0,0)}$	$({f 1},{f 1},{f 1})$	
$\boxed{(1,0)}$	(3 , 1 , 1),(1 , 3 , 1),(1 , 1 , 3)	Yes
(0,1)	$({f ar 3},{f 1},{f 1}), ({f 1},{f ar 3},{f 1}), ({f 1},{f 1},{f ar 3})$	Yes
(2,0)	$(6,1,1), (1,6,1), (1,1,6) \ (3,3,1), (3,1,3), (1,3,3)$	Yes
(0,2)	$(\overline{\bf 6},{\bf 1},{\bf 1}),({\bf 1},\overline{\bf 6},{\bf 1}),({\bf 1},{\bf 1},\overline{\bf 6})\\ (\overline{\bf 3},\overline{\bf 3},{\bf 1}),(\overline{\bf 3},{\bf 1},\overline{\bf 3}),({\bf 1},\overline{\bf 3},\overline{\bf 3})$	Yes
(1,1)	$(8,1,1),(1,8,1),(1,1,8) \ (3,\mathbf{\bar{3}},1),(3,1,\mathbf{\bar{3}}),(1,3,\mathbf{\bar{3}}) \ (\mathbf{\bar{3}},3,1),(\mathbf{\bar{3}},1,3),(1,\mathbf{\bar{3}},3)$	

There is a nice way that MFV DM fits in with SUSY with R-Parity Violation:

R-Parity Violation:

$$W' = \lambda L L \bar{e} + \lambda' L Q \bar{d} + \lambda'' \bar{u} \bar{d} \bar{d} + \mu' L H_u$$
 + soft terms

- Many (small) parameters
- LSP decay no neutralino DM
- Proton decay constraint:

$$\tau_p \sim 10^{33} \text{yr} \left(\frac{10^{-19}}{\lambda'}\right)^2 \left(\frac{10^{-8}}{\lambda''}\right)^2 \left(\frac{m_{\tilde{q}}}{\text{TeV}}\right)^4$$

R-parity sounds more attractive - but where are the superpartners?

stop constraints

MFV SUSY requires RPV superpotential consistent with MFV, and *holomorphic* in Yukawas:

$$W' = w''(Y_u \bar{u})(Y_d \bar{d})(Y_d \bar{d})$$

- Explains size of RPV couplings
- Get around MET collider constraints
- Some form of flavor protection needed anyway
- OK with $\Delta B \neq 0$ constraints
- Holomorphic: simplification from allowing all MFV couplings

super-flavored dark matter

- restore weak-scale matter, take advantage of MFV for dark matter stability
- accommodated within RPV SUSY with light superpartners

 χ_t

DM flavor multiplet, colored mediator Y

$$W = \lambda Y X_i \bar{u}_R^i + M_X \bar{X} X + M_Y \bar{Y} Y$$

$X_i = (\eta_i, \chi_i) \sim (1, 1, 0)_{\text{SM}} \times (1, 3, 1)_{G_q}$ $Y = (\phi, \psi) \sim (3, 1, 2/3)_{\text{SM}} \times (1, 1, 1)_{G_q}$

flavor triality

$$e^{2\pi i/3}$$

$$e^{4\pi i/3}$$

Kahler potential will introduce corrections

$$\int d^4\theta \left(X^{\dagger} (1 + kY_u^{\dagger} Y_u + \dots) X \right)$$

$$\int d^4\theta \left(\frac{S^{\dagger}}{M} \bar{X} \hat{\mu}_X X + \text{h.c.} \right), \quad \hat{\mu}_X = \mu_0 + \mu_1 Y_u^{\dagger} Y_u + \dots$$

$$S = \theta^2 F$$

masses from SUSY breaking

top-flavored dm

preferred coupling to tops

$$\lambda \to \lambda_0 Z_X \approx \left(\lambda_0, \lambda_0, \frac{\lambda_0}{\sqrt{1 + ky_t^2}}\right)$$

$$\mathcal{M}_X \approx \left(m, m, \frac{m + (F/M)\mu_1 y_t^2}{(1 + ky_t^2)}\right)$$

$$-\mathcal{L} \supset \lambda_t \bar{t}_R \chi_t \phi + \lambda_t \tilde{t}_R^{\dagger} \chi_t \psi + \text{h.c.}$$

direct detection through loops

coupling to Z dominates, through large top mass

$$g_Z \bar{\chi}_t \gamma^\mu P_L \chi_t Z_\mu$$

$$\mathcal{O} \sim \bar{\chi}_t \gamma^\mu P_L \chi_t H^\dagger i D_\mu H$$

$$\mathcal{O} \sim \bar{\chi}_t \gamma^{\mu} P_L \chi_t H^{\dagger} i D_{\mu} H \qquad g_Z \sim \frac{g}{c_w} \frac{\lambda_t^2 N_c}{16\pi^2} \left(\frac{m_t}{m_{\phi}}\right)^2 \left(1 + \log \frac{m_t^2}{m_{\phi}^2}\right)$$

magnetic dipole moment

$$\frac{\mu_{\chi}}{2}\bar{\chi}_t \sigma^{\mu\nu} \chi_t F_{\mu\nu}$$

collider production

The new scalar mediator can be a "fake" stop, but its mass not tied to naturalness

possibly other states in the t-channel:

scalar triplet, gluino-like weakly constrained

the model is alive:

Thermal relic:

O(1) couplings,
close to TeV scale
masses to satisfy
LUX constraints

bottom-flavored dm

motivation: explanation of the GC excess

a dark matter gamma-ray signal?

Daylan et al.

Coupling dark matter to down-type quarks:

$$\mathcal{L} = [M_{\chi}]_{ji} \chi_i \chi_j^c + \lambda_{ij} \chi_i d_j^c \phi + \text{h.c.}$$

Suppose dark matter is a triplet under $SU(3)_Q$

hierarchical couplings $\lambda = \lambda_0 Y_d$

large mass splittings

$$M_{\chi} = M_0 + \Delta M_u Y_u Y_u^{\dagger} + \Delta M_d Y_d Y_d^{\dagger}$$

Third-generation in DM χ_b could be the lightest, with large coupling to b-quarks

$$\mathcal{L} \supset \frac{\lambda_b}{2} \left[\bar{b} (1 - \gamma_5) \chi_b \phi + \bar{\chi}_b (1 + \gamma_5) b \phi^{\dagger} \right]$$

$$m_{\phi} \gtrsim 700 \text{ GeV}$$

Charged mediator - flavor singlet sbottom-like

$$m_{\chi_b} \approx 35 \text{ GeV}$$

Dirac DM, only couples to b

Integrating out mediator:

$$\mathcal{O} = \frac{\lambda_b^2}{2m_\phi^2} \bar{\chi}_b \gamma^\mu (1 - \gamma_5) \chi_b \bar{b} \gamma_\mu (1 + \gamma^5) b$$

Effective vector-vector and axial-axial interactions, dominant phenomenology (except collider)

$$m_{\phi} \gtrsim 700 \text{ GeV}$$

colored scalar, strong collider constraints

big difference in masses leads to large coupling needed for thermal relic cross section:

$$\sigma v = \frac{3\lambda_b^4 m_{\chi_b}^2 \sqrt{1 - m_b^2 / m_{\chi_b}^2}}{32\pi (m_{\chi_b}^2 + m_{\phi}^2)^2} \times [1 + O(v^2)]$$

$$\approx 4.4 \times 10^{-26} \,\mathrm{cm}^3/\mathrm{s} \left(\frac{\lambda_b}{2.16}\right)^4 \left(\frac{m_{\chi_b}}{40 \,\mathrm{GeV}}\right)^2 \left(\frac{725 \,\mathrm{GeV}}{m_\phi}\right)^4$$

Because of large coupling, single production of mediator can also contribute:

However, the spectrum in MCT is softer.

The final effect on the "sbottom search" limit appears to only be <10% in mediator mass.

$$M_{CT}^2 = \left[E_T(j_1) + E_T(j_2) \right]^2 - \left[\vec{p}_T(j_1) - \vec{p}_T(j_2) \right]^2$$

Single production of mediator:

	Process	Monojet	b-tag	b -tag on j_1
Background	Z+jets(fake)	406 fb	11 fb	7 fb
	$Z+b+\mathrm{jet}$	6.7 fb	4 fb	3 fb
	W+jets, W + b	95 fb	3 fb	2 fb
	$t\bar{t}$ +jets	16 fb	11 fb	6 fb
	$\bar{X}X$ +jets	11 fb	0.9 fb	0.7 fb
Signal	$\bar{X}X + b + \text{jets}$	65 fb	40 fb	33 fb
	$\bar{X}X + t\bar{t}$	244 fb	156 fb	113 fb

TABLE I: Monojet and mono-b search at 8 TeV

"mono-b" final state
with MET + b-jet,
studied in
Lin, Kolb, and Wang

mono-b sensitive out to ~500 GeV in mediator mass:

Neither search was optimized for this model.

In discovery scenario, both mono-b and bb+MET channels could be used to distinguish the model from a sbottom.

direct detection

Charge-charge interaction:

$$\mathcal{O} \sim \frac{1}{m_{\phi}^2} \bar{\chi} \gamma^{\mu} \chi \partial^{\nu} F_{\mu\nu}$$

$$\mathcal{M} = b_q \bar{u}_\chi \gamma^\mu u_\chi \langle N | Q \bar{q} \gamma_\mu q | N \rangle \qquad b_q = -\frac{3Q_b e \lambda_b^2}{64\pi^2 m_\phi^2} \left[1 + \frac{2}{3} \ln \left(\frac{m_b^2}{m_\phi^2} \right) \right]$$

$$\sigma_n \approx 10^{-45} \text{cm}^2 \times \left(\frac{\lambda_b}{2.16}\right)^4 \left(\frac{725 \text{ GeV}}{m_\phi}\right)^4$$

model prospects

parameter space: large mediator mass, large coupling needed

definitively tested by increased LUX exposure

model prospects

parameter space: large mediator mass, large coupling needed

mono-b, sbottom searches with LHC14,100/fb

definitively tested by increased LUX exposure

conclusions

- flavored dark matter: natural setting for dark matter coupled to third generation quarks
- MFV dark matter thermal relic for MFV SUSY, dark matter stability
- top and bottom flavored dark matter still alive but just within reach. bfdm also a model for GC gamma ray excess.